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ABSTRACT: It is hard to bridge the gap between
mathematical formulations and biological implementations of
Turing patterns, yet this is necessary for both understanding
and engineering these networks with synthetic biology
approaches. Here, we model a reaction−diffusion system
with two morphogens in a monostable regime, inspired by
components that we recently described in a synthetic biology
study in mammalian cells.1 The model employs a single
promoter to express both the activator and inhibitor genes and produces Turing patterns over large regions of parameter space,
using biologically interpretable Hill function reactions. We applied a stability analysis and identified rules for choosing biologically
tunable parameter relationships to increase the likelihood of successful patterning. We show how to control Turing pattern sizes
and time evolution by manipulating the values for production and degradation relationships. More importantly, our analysis
predicts that steep dose−response functions arising from cooperativity are mandatory for Turing patterns. Greater steepness
increases parameter space and even reduces the requirement for differential diffusion between activator and inhibitor. These
results demonstrate some of the limitations of linear scenarios for reaction−diffusion systems and will help to guide projects to
engineer synthetic Turing patterns.
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The self-organization of spatial patterns and structures is a
fundamental problem in many fields, especially in

developmental biology. There are various forms of patterning
required for the development of an organism from a zygote, but
a common type of patterning requires regular periodicity, such
as in making multiple stripes or spots. The most influential
model to explain periodic patterns is the reaction−diffusion
model proposed by Alan Turing in the 1950s. Although first
suggested by Rashevsky,2 it was Turing who actually
demonstrated the periodic or complex reaction−diffusion
patterns that came to be known as Turing patterns.3 Turing
showed that a coupling between diffusion and reaction can lead
to instabilities from initially homogeneous paired reagent
systems, resulting in the spontaneous emergence of regular
patterns. Including seminal contributions from Gierer and
Meinhardt in the 1970s,4 a large body of literature subsequently
developed the modeling of self-organizing biological patterns,
based on reaction−diffusion theory (see refs 5−8).
Although other mechanisms of pattern formation exist,7,9 in

this article we will focus on the Turing mechanism, which is
unique in terms of self-correction and economy of design,
making it a tantalizing engineering target in the emerging field
of synthetic biology.10 The Turing mechanism can be thought
of as a competition between self-activation by a slow-diffusing
chemical (or biological) activator and inhibition by a faster-
diffusing factor.11 This has been largely applied to explain self-

regulated repetitive pattern formation in developing animal
embryos.12−16

Over the last few decades, research in nonequilibrium
chemical systems has led to experimental confirmations of the
spatial patterns formed by Turing instabilities.17−21 However,
the experimental verification of Turing-driven developmental
phenomena has been elusive in biological systems,12,22 while
other patterning strategies have been more frequently found in
development.23 For example, the formation of the characteristic
periodic striped pattern of pair-rule gene expression in
Drosophila7,24 follows a strategy based on a hierarchical
regulatory gene network, embedded in a morphogen gradient,
rather than a Turing pattern.
Even though many biological patterns resemble Turing

patterns in appearance, this alone does not constitute a
compelling proof of such mechanisms actually operating in
living systems.12 Alternatively, due to recent advances in
biotechnology, the synthetic generation of Turing patterns in
cell culture should be possible in the near future.25,26 This will
increase our fundamental understanding of these systems as
well as provide tools for biotechnology applications. To
implement such engineered biological systems, we need to
know a priori the requisite properties of the gene and protein
building blocks. These properties mediate the processes that
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support Turing patterning formation, such as production
(through specific regulatory functions), diffusion, and degrada-
tion. We have been developing a scaffold for biological network
engineering with diffusing activators and inhibitors1 and
decided to implement a computational model to help guide
the design of our artificial networks. The key aim, therefore,
was to develop a biologically interpretable model that would
show us the most flexible parameter relationships for making
patterns.
Although Turing instabilities are almost ubiquitous in studies

modeling highly repetitive patterns in developmental biology,
the regulatory functions used in the modeling are often selected
by criteria that simplify the equation analysis rather than being
chosen on the basis of their correlation with the actual
biological response.13,16,27−29 These simplifications give us
phenomenological descriptions and can lead to model-induced
constraints over mathematical parameters, with these con-
straints being mandatory for patterning to occur. These affected
parameters encompass several biophysical processes such as
diffusion, regulation, and degradation, all of which underly
Turing pattern formation. Unfortunately, such mathematical
parameters are not independent of each other and,
subsequently, the imposed constraints conform poorly to the
actual properties of the available biological building blocks.
Despite the extensive literature on Turing patterns in biology,
very few studies have considered sigmoidal regulatory
functions. In a recent study on hair follicle development, Sick
et al. showed that a sigmoidal function for noncompetitive
inhibition is also able to display Turing patterns.30 Despite
being phenomenological, sigmoidal functions are much closer
to the real behaviors of gene expression systems and are thus
more relevant.
In the present article, we study the parameter space where

Turing instabilities can occur, in reaction−diffusion systems
whose reaction terms involve regulatory functions with greater
biological interpretability. To achieve this, we have performed a
linear stability analysis to find the constraints on parameters
that allow pattern formation. We believe that these findings can
be used to guide the engineering of biological systems able to
form Turing patterns using synthetic biological scaffolds.1

Importantly, we find that the cooperativity associated with the
regulatory function is a key factor. Together with the
differential diffusion of activator/inhibitor, cooperativity
determines the size of the parameter region associated with
successful patterning. This, in turn, can be be used to predict
which properties yield robustness and engineering flexibility.

■ RESULTS AND DISCUSSION
Two-Morphogens Turing Model. In general, a biological

system able to present Turing instabilities can be modeled by
coupled reaction−diffusion equations of the form

ρ μ̇ = ∇ + −a D a f a h a( , )a a a
2

(1)

ρ μ̇ = ∇ + −h D h g a h h( , )h h h
2

(2)

where a and h denote the spatial concentration of the activator
and the inhibitor morphogens, respectively. The functions f and
g correspond to the regulatory functions of the genes that
encode the morphogens a and h. Such functions describe how
the expression (or production) rate depends on the
concentration of activator a and inhibitor h (see the sketch of
the model in Figure 1A). The last term on the right-hand side

of each equation describes the degradation process that is
assumed to be linear. In our biological implementation, the
activator corresponds to hepatocyte growth factor (HGF), and
the inhibitor is a truncated variant of HGF, named NK4.1 Both
the activator and inhibitor are expressed and secreted into the
extracellular medium from Madin−Darby canine kidney
(MDCK) cells, grown as cysts in 3D collagen cell culture.
We will consider here the case that both morphogens are

under the control of the same promoter, which corresponds to
the matrix metalloproteinase promoter-1 (MMP-1) in our
synthetic system.1 Mathematically, this means that both
regulatory functions f and g will be the same, so, hereafter,
the regulatory function will be denoted by f. Additionally, we
consider that the regulatory functions have sigmoidal forms. In
particular, we consider that the regulatory function of the
activator obeys a Hill function in the absence of inhibitor. For
the inhibitor, there are two alternatives: First, the inhibitor
competes with the activator for the same regulatory site,
decreasing the effective affinity (see Figure 1B). Thus, the
regulatory function is well-described by
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+ +
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where nH is the Hill exponent that describes the steepness of
the response to the activator, while mH is related to the
inhibitor. As we are regarding the case that both morphogens
are under the control of the same promoter (to simplify
downstream biological engineering), we consequently consider
that the steepnesses of the responses to the activator and to the
inhibitor are the same, i.e., nH = mH. Biologically, this
corresponds to HGF or NK4 binding competitively to the
extracellular cMet receptor and activating or repressing an
intracellular signaling cascade that controls expression of the
MMP-1 promoter. The second alternative is that the inhibitor

Figure 1. Modeling overview. (A) Schematic diagram of the biological
system at the cellular and molecular levels: activators (green particles;
HGF) and inhibitors (red particles; NK4) are products of genes
controlled by the same promoter (MMP-1). These molecules are
released into the extracellular medium. Activator and inhibitor
molecules compete for binding to membrane receptors (yellow;
cMet). Activators bound to membrane receptors regulate the
production of morphogens through the regulatory function f. (B)
The regulatory function used in this article. The plots show f vs
activator concentration a for three different concentrations of inhibitor
h: 0.01 (blue), 0.25 (red), and 1.0 (brown). nH = 2, ka = kh = 0.1.
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blocks the activation pathway, decreasing the effective
production rates (see Figure S1). This type of noncompetitive
inhibitor case was used recently for modeling hair follicle
development, and Turing patterns were reported for nH = 2, Da
= 0.005, and Dh = 0.2.30

The Dimensionless Problem. Before determining under
which conditions the homogeneous steady state becomes
unstable, leading to inhomogeneous Turing patterns, it is
convenient to define the following new variables. Thus, the new
variables of time t,̂ position x ̂, and the concentrations a ̂ and h ̂
can be written in terms of the variables and parameters
contained in eqs 1−3 as

μ μ̂ = ̂ =t t x x D, /a a h

̂ = ̂ =a a k h h k/ , /a h

where ka and kh are related to the effective dissociation constant
for the activator and inhibitor, respectively. Rewriting eqs 1 and
2 with these new variables, we get

̂ ̇ = ∇ ̂ + ̂ ̂ ̂ − ̂a D a r f a h a( , )a
2

(4)

μ̂ ̇ = ∇ ̂ + ̂ ̂ ̂ − ̂h h r f a h h( , )h
2

(5)

where we have introduced the abbreviations D = Da/Dh, μ =
μh/μa, ra = ρaka

nH−1/μa, and rh = ρhka
nH/(μhkh). f ̂ denotes the

dimensionless form of the regulatory function eq 3 and can be

written as ̂ ̂ ̂ = ̂ + ̂ + ̂f a h a h a( , ) /(1 )n n nH H H . Hereafter, we will
write new variables a ̂, h ̂, and the function f ̂ without the hat in
order to simplify the notation.
These reaction−diffusion equations, with any of the specified

regulatory functions, have more parameters and more complex
dependences on morphogens than previous ones.16,27−29

Because it is very difficult to understand the dynamics of
such systems directly, a possible approach is to use a linear
stability analysis. For example, it is possible to derive a closed
expression for the wavenumber dependency with diffusion
constants and the derivative of the linear reaction terms.27 Of
course, we can approximate any real reaction terms to a linear
one, but such a compromise leaves a gap to bridge, which is
essential for engineering a real biological device. It is necessary
to find the link between the derivative and the actual biological
parameters that fully characterize the reaction term. These
include morphogen degradation rates, production rates,
cooperativity, and dissociation constants; reconciling them is
not straightforward. Despite its complexity, our system is
amenable to the typical linear stability analysis, in an analytical
fashion, for some particular values of Hill coefficient nH.
The Dispersion Relation. In order to determine the

conditions for the development of Turing patterns, we will
consider the dimensionless version of the two-morphogen
system that evolves in a one-dimensional domain of length L.
Given the reduced version of the reaction−diffusion equations,
the stationary homogeneous solutions, denoted by (ao,ho),
correspond to the solution of the system in the absence of
diffusion

=r f a h a( , )a o o o (6)

μ=r f a h h( , )h o o o (7)

The (ao, ho) can achieve Turing instabilities depending on the
parameter values. Our main goal is to obtain the region in the
parameter space where the instability occurs for the regulatory

functions f (see eq 3). As is usual, we perturb the solution
slightly according to a = ao + δa and h = ho + δh, where δa = δa
e(ωt−ikx) and, similarly, δh = δh e

(ωt−ikx). The wavenumber k is
the number of complete waves per 2π units of distance, while
the real part of ω can be interpreted as the growth rate. Because
morphogens cannot diffuse beyond the boundaries x = 0 and x
= L, we need to impose a zero-flux boundary condition, which
implies that k takes discrete values kn = nπ/L, with n = 0, 1, 2,
.... Next, we introduce ao + δa and ho + δh into eqs 4 and 5 and
linearize the system around the point (ao,ho), which gives

δ
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where fa and f h are derivatives of the regulatory function f with
respect to a and h, respectively, evaluated in the point (ao, ho).
The perturbation amplitudes δa and δh can be different from

zero if and only if the discriminant of is zero. Then, the
condition for a nontrivial solution is given by ωn

2 + αnωn + βn =
0. Thus, we obtain a function, known as dispersion relation,
which associates a growth rate ωn to each kn given by

ω
α α β

=
− ± −± k( )

4

2n n
n n n

2

(8)

where αn and βn are given by

α μ= + + + + −D k r f r f( 1) 1n n h h a a
2

(9)

β μ μ

μ

= + + + − + +

−

Dk D Dr f r f k r f

r f

(1 )n n h h a a n h h

a a

4 2

(10)

Because ωn
−(kn) is negative in the region of interest of the

parameter space, we will analyze the dependency of the largest
root ωn

+(kn) with the wavenumber kn. The stationary
homogeneous state becomes unstable when the real part of
ωn

+ is positive for some wavenumber kn. In the linear
approximation, the value of the wavenumber associated with
the largest positive amplification rate dominates the evolution
of the instabilities; we will denote this wavenumber as kmax. kmax
is an important feature of the resulting patterns because of its
relation to their size. The typical size of an emergent pattern is
given by π/kmax such that higher kmax implies low wave sizes and
thus smaller patterns.
If the size of domain is much larger than the typical pattern

size (i.e., L ≫ π/kmax), then we can go one step further by
considering the discrete variable kn as a continuous variable k.
In this way, we can obtain an expression for kmax by maximizing
ωn

+

ω∂
∂

=
+

=

k
k
( )]

0
k kmax

Thus, in the framework of the linear stability analysis, it is
possible to determine a closed expression for kmax as a function
of the parameters set
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where fa and f h can be written in a closed expression in terms of
the parameters μ, ra, and rh for some values of nH. However, eq
11 alone does not allow us to determine if the Turing pattern
associated with kmax will be stable. As we will see later, transient
Turing patterns can also occur for some parameter values. The
growth of Turing patterns also depends on the size domain L,
which, in any case, must be greater than the typical pattern size
(i.e., L > π/kmax). This condition imposes a critical length for
the domain size L, which implies a constraint by the organism
size for Turing patterns to develop.6

In the next section, we will analyze some properties of the
Turing instabilities.
Parameter Region for Turing Patterns. For further steps

in the stability analysis, we need to specify the regulatory
function and the Hill coefficient. The system in the absence of
diffusion (eqs 6 and 7) has two fixed points for nH > 1; one of
these fixed points corresponds to a stable solution, and the
other one, to an unstable solution. For nH ≤ 1, the unstable
solution disappears, and one cannot expect the occurrence of
Turing instabilities. We are able to find closed expressions for

the fixed points for nH = 4/3,
3/2, 2, and 3. These closed

expressions are large and complicated algebraic expressions in
most of cases, with the exception of nH = 2. Thus, we will
illustrate the complete analysis for this case, but the same steps
can be done for the above-mentioned Hill coefficient values.
To look for an unstable state, we analyze the stability of all

fixed points by examining the eigenvalues of the Jacobian
matrix. For the case nH = 2, we find that the solution given by

μ μ μ μ
μ

=
− − −

+
a

r r r r r

r r

4 4
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a a a a h

a h

3 2 4 2 2 2 2

2 2 2
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μ
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a r
ro

o h
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has one positive and one negative eigenvalue, corresponding to
an unstable state known as a saddle point. From expressions 12
and 13, we can determine the derivatives fa and f h, which in
turn feed the expression of kmax (11).
The unstable state determined by eqs 12 and 13 allows

Turing instabilities in a region of the parameter space spanned
by D, μ, ra, and rh, which are terms related to combinations of
diffusion rates, degradation rates, and binding affinities. Because
we are dealing with four-dimensional space, we can illustrate
only some projections of this region on 3D space. In particular,
we are interested in the projections on the space spanned by

Figure 2. Parameter region for Turing patterns. Region of the parameter space where Turing instabilities develop (i.e., where kmax is positive) for nH
= 2 and D = 0.01 (A) or D = 0.1 (B). The region of pattern-forming parameter space increases when D decreases (i.e., a 100-fold difference in
inhibitor diffusion, relative to slower activator diffusion, is more likely to yield Turing patterns than is a 10-fold difference). Turing space also
increases with the steepness of the Hill function nH (see Figures 7 and 8).

Table 1. Summary of Parameter Relationships To Engineer Turing Patterns

parameters for Turing
patterns

current
system
value

range of
values

simulated

preferred
parameter value

and range ideas to engineer-implementation refs

differential diffusion
(D = Da/Dh)

1.0 0.01−0.75 0.5, Da < Dh HGF fusion with collagen binding domains or multimerization domains of any
protein.

38, and
41−44

differential degradation
(μ = μh/μa)

1.0 0.45−1.5 0.5, μa > μh TEV protease targeted to HGF 45

Hill coeff. (nH) 1.2 1.33−6.0 5, nH > 1.33 Having both HGF and cMET-receptor in positive feedback, HGF
sequestration on collagen.

46 and
47

dimensionless activator
prod. rate
(ra = ρaka

n−1/μa)

unknown 2.9−6.0 6.0, ra > 5.0 Greater production of activator (e.g., alternative promoter) for larger, more
rapidly forming patterns

39

dimensionless inhibitor
prod. rate
(rh = ρhka

n/μhkh)

unknown 5.0−6.0 5.0, 5 < rh < 6 NK4 variants with lower activity for larger more rapidly forming patterns.
Greater production of inhibitor (e.g., alternative promoter) for smaller,
slower forming patterns

37 and
39
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parameters μ, ra, and rh for some values of D. In Figure 2, we
depict the projection of the region of the parameter space
where kmax > 0, i.e., the region where Turing patterns can be
developed, for two different values of the ratio of diffusion of
activator/inhibitor, D (0.01 and 0.1). Biologically, this
corresponds to situations where the inhibitor diffuses 100-
and 10-fold faster than that of the activator, respectively. As
expected, the volume of this region decreases with D, meaning
that it is easier to find Turing patterns when the inhibitor
diffuses much faster than the activator (100-fold faster is better
than 10-fold faster; see also Table 1).
In Figure 3, we show two cross-sections of the volume

displayed in Figure 2 (D = 0.01) with two different planes,

where the heatmap is related to kmax scale. In panel A, the
intersecting plane is rh = 5, and panel B corresponds to ra = 5.
From this plot, we can conclude that the convex side of the
volume is related to higher values of kmax and consequently to
patterns with smaller typical length. Because μ is the ratio of the
degradation rates of inhibitor relative to activator, increasing
inhibitor degradation or decreasing activator degradation will
increase the pattern size. Alternatively, increasing the
production of activator (or decreasing the production of
inhibitor) can also increase the pattern size. Figure 4 depicts the
numerical solution of the eqs 4 and 5 for the parameter values
indicated by the white dots in Figure 3B, i.e., D = 0.01, ra = 5, rh
= 5, and three different values of μ: 0.45, 1, and 1.5. We can see
that the size of the pattern increases with μ, as predicted.
For μ = 1.5, the simulation shows that the system, initially in

a slightly perturbed unstable homogeneous solution, reaches a
stable homogeneous solution after a transitory Turing-like
pattern generation. It seems that for small μ there does exist a
stable periodic pattern to which the system is attracted once the
Turing bifurcation occurs, whereas for larger μ, such a stable
pattern does not exist. Interestingly, transient Turing patterns
have been observed in chemical systems where the transiency is
due to the depletion of chemical species in a closed system.31,32

In Figure 5, we can see the growth rate ω+ as a function of
the k for different values of μ. The position of local maximum
kmax changes with μ (the ratio of the degradation rates of
inhibitor relative to the activator). From Figure 5, the
maximum growth rate of patterns, denoted by ωmax =

ω+(kmax), seems to increase with μ for this particular set of
values. In general, the maximum growth rate of patterns
depends on the parameter set D, μ, ra, and rh. Figure 6A,B
depicts how ωmax depends on these parameters for cross-
sections of the same volume represented in Figure 3 for D =
0.01. These plots show that smaller patterns grow more slowly.
This prediction is in agreement with the simulation shown in
Figure 6C, which depicts the temporal evolution of the
concentration of a at the position x = 25.

Figure 3. Size of Turing patterns. Intersection of the volume of Figure
2A with plane rh = 5.0 (A) and ra = 5.0 (B); the color scale depicts kmax
values. For a higher wavenumber kmax, one expects smaller patterns,
due to the typical length L being given by L = π/kmax. Turing patterns
for parameter values corresponding to the white dots in panel B are
shown in Figure 4.

Figure 4. Turing patterns and morphogen degradation. Striped
patterns obtained by numerical integration of eqs 5 and 6, using the
same parameters as Figure 3B (white dots), for three different values
of μ: 0.45 (A), 1.0 (B) and 1.5 (C). In all cases, the initial condition is
a small Gaussian perturbation of the unstable steady state at x = 25. In
agreement with Figure 3B, the size of the pattern in the simulation
increases with μ. Because μ is the ratio of the degradation rates of
inhibitor relative to activator, increasing inhibitor degradation or
decreasing activator degradation will increase the pattern size. For μ =
1.5 (C), the typical Turing pattern decays to the stable solution after
its initial formation, at t = 75, as a consequence of a field size effect.
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Turing Patterns and Cooperativity. To further analyze
the effects of the D diffusion term and μ, we must also consider
the role of cooperativity in the patterning processes. Biological
regulatory functions are usually sigmoidal responses that arise

by cooperative binding of transcription factors (TFs)33 or by
molecular titration.34 The steepness of the sigmoidal stimulus−
response curve is modeled and controlled by the Hill coefficient
nH. Unlike with the other parameters, it is not possible to obtain
closed expressions for the fixed points in terms of the exponent
nH. However, we obtained closed expressions for some
particular values of nH, which allows us to unveil the effects
of this important type of nonlinearity.
In Figure 7, we depict projections of the region where the

system develops Turing instabilities for different values of the
Hill coefficient nH. Again, we are interested in the projections
on the space spanned by parameters μ, ra, and rh for D = 0.01.
We can see that the projected volume increases when the
cooperativity increases. In particular, for the nH = 3 case (panel
A), lower values of μ ensure a large domain in the (ra, rh) plane,
where Turing instabilities can develop. By contrast, for the
smaller nH value tested (nH = 4/3, panel B), we find that this
region is very small, almost reduced to μ < 5 and a narrow
range of the parameter ra.
Looking at Figures 2 and 7, we can see that the region of the

parameter space where Turing instabilities are expected
decreases or increases in size as a function of D and nH.
However, there is not much change in the overall position of
the region itself. This feature allows us to explore the behavior
of the system for higher nH and similar diffusivity for both
morphogens, i.e., where D is closer to 1. Figure 8 depicts
Turing patterns obtained for the case where the inhibitor
diffuses only slightly faster than activator D = 0.5 and 0.75,
using higher Hill coefficients. Figure 8A uses D = 0.5 and nH =
5, whereas in Figure 8B, we used D = 0.75 and nH = 6 (see
Supporting Information for the code for simulations).
Overall, steeper regulatory functions lead to larger parameter

sets compatible with Turing patterns, which should facilitate
design decisions for synthetic gene network engineering.
Importantly, even situations with small differential diffusion
between activator/inhibitor can support Turing patterns in
combination with high Hill coefficients (Table 1).
Until now, all of our simulations were done for dimensionless

equations (eqs 4 and 5). To translate the results to the spatial
and temporal scales of a real biological system, we can
transform back to variables with units by multiplying the
dimensionless lengths by the factor (Dh/μa)

1/2 and dividing the
dimensionless times by μa. Thus, the real typical size of a
pattern is given by

π
μ

D
k

h

a

2

max
2

Assuming that the diffusion constants of inhibitor is similar to
our previous experimental estimation for HGF (DHGF = 10−3

mm2/min) and the activator HGF half-life in the extracellular
medium is around 21 h,1 we can predict that the typical repeat
size of the pattern is around 4−6 mm. Hence, the time needed
to reach fully developed Turing patterns on the domain we
have explored (≈50 dimensionless units in Figure 4) is
estimated to be around 100 h. These scales are compatible with
the system we have described, where MDCK cysts can be
grown for up to 2 weeks in glass-bottomed dishes measuring
several centimeters in diameter.
A final question was whether altering the relative effective

production rates of activator ra and inhibitor rh would alter
pattern formation. In Figure 9, numerical simulations show
patterns arising for the effective inhibitor production rh = 5.0

Figure 5. Speed of pattern appearance versus pattern size. Behavior of
ω+ as a function of k for n = 2, D = 0.01, ra = 2.5, rh = 7.0, and three
different values of μ: 3.75 (green), 4.5 (red), and 6.5 (blue). ω+

presents only one maximum in kmax, whose particular value depends on
the parameter set (D, μ, ra, and rh). For this particular set of parameter
values, we can see that speed of pattern appearance, ωmax, increases
with the typical size of the pattern.

Figure 6. Growth rates of patterning. (Top) Similar to that in Figure
3, we see the intersection of the volume of Figure 2A, with plane rh =
0.5 (A) and with the plane ra = 5 (B), but now the color scale depicts
ωmax values instead of kmax. ωmax quantifies the speed of pattern
appearance; for higher values, one expects faster-forming patterns. (C)
Pattern formation dynamics for the concentration of a at x = 25.
Parameter values correspond to the white dots in panel B (D = 0.01,
nH = 2, ra = 5, rh = 5, and with three different values of μ: 0.45 (green
line), 1.0 (red line), and 1.5 (blue line)).
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and three different values of effective activator production ra:
2.9 (A), 3.5 (B), and 4.2 (C). We can see that increasing
activator production ra increases the pattern size and its speed
of formation, in agreement with Figures 3 and 6. This suggests
that using different HGF-responsive promoters, with a stronger
response for the inhibitor, could tune the system for smaller
and slower-evolving patterns.
In summary, we found a series of relationships that

qualitatively guide our design decision making for the
downstream engineering of Turing pattern systems, using our
MDCK system.1 In the following discussion, we will explore the
ways that some of these properties could be engineered.
Discussion. Alan Turing’s hypothesis that an inhibitor and

activator can create regular patterns, emerging from uniform
but noisy initial conditions, was one of the first attempts at a
theoretical explanation of biological pattern formation.3

Importantly, his system employed faster diffusion and decay
of the inhibitor, relative to that of the activator. Today, it is
broadly accepted that two requirements, namely, local self-
enhancement and long-range inhibition, are essential features of
this type of pattern formation.5 The results presented here
suggest one more additional requirement, not so broadly
present or acknowledged in previous studies, which is for
cooperativity in the regulatory function response.
Several studies have reported Turing-like patterns in

developmental biology, but, even now, it is still not absolutely

clear whether many real molecular systems employ activators
and inhibitors exactly in this way. Excitingly, a recent paper
elegantly demonstrated that Nodal/Lefty proteins have differ-
ential diffusion properties that underpin a reaction−diffusion
patterning system in zebrafish embryogenesis.35 It is interesting
that, in this system, the relative protein half-lives were only a
minor contributor to the differences in the range of these
factors, with differential diffusivity contributing the most to
patterning. For a deeper understanding of these systems that
enables bottom-up engineering, it is important to define which
properties of the network components are the most critical and
which are more forgiving of variation.
In this article, we investigated how the regions of parameter

space where Turing instabilities occur are affected by specified
parameters that can be engineered biologically. We were
motivated to explore the simple diffusing activator and inhibitor
system that we recently developed.1 This system is genetically
encoded and is based on MDCK cells secreting an activator,
hepatocyte growth factor (HGF), and a truncated variant that
acts as an inhibitor (NK4). Both molecules then bind the same
membrane receptor (c-Met) extracellularly and thus activate or
repress the same matrix metalloproteinase-1 gene promoter
(MMP-1), via a signaling cascade, which in turn produces more
activator and inhibitor. Although these components have been
shown to function in cell culture,1 they have not yet been
connected to form a Turing-like feedback network.36 To work

Figure 7. The effect of cooperativity. Region of the parameter space where kmax is positive for D = 0.01: nH = 3.0 (A) and nH = 1.333 (B). This result
suggests that the presence of cooperativity in the regulatory function will enhance the possible parameter space where Turing patterns occur.

Figure 8. Patterns with low differential diffusion D by using higher Hill coefficients: simulation results obtained for D = 0.5, nH = 5, μ = 0.7, rh = 5.5,
and ra = 6 (A) and for D = 0.75, nH = 6, μ = 0.8, rh = 6, and ra = 6 (B). The D term reflects the ratio of the diffusion constants of activator/inhibitor,
and patterns can be achieved with relatively small differences so long as the response function is steep, i.e., cooperative. Note that different spatial
scales are used.
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toward this goal, we were primarily interested in developing a
biologically interpretable model to explore whether these
components would be at all amenable for supporting Turing
pattern formation in a simple, single-promoter implementation.
Furthermore, we aimed to identify the parameter properties
associated with the largest pattern-forming parameter space,
with respect to the other parameters. We thus aimed to define
the most robust regions of design space for attempting to
engineer artificial Turing patterns in cells.
Our main findings can be summarized as follows (see also

Table 1):

(1) We found that putting both morphogens under the
control of the same promoter (easier to engineer) still allowed
the formation of Turing patterns in the context of our
competitive activator−inhibitor system. This could be achieved
in principle by expressing both HGF and NK4 with the MMP-1
promoter, resulting in a combined positive−negative feedback
system. It should be noted that a previous model30 also used a
single promoter; however, that model was within a framework
of noncompetitive inhibition.
(2) As expected, the ratio of diffusion of inhibitor/activator

affects the size of the parameter regions associated with Turing
patterns. For example, 100-fold faster inhibitor diffusion relative
to that of the activator is more likely to achieve patterns than
10-fold faster. We assume that the apparent diffusion constants
of HGF and NK4 in collagen are similar. Practically, there are
several ways to increase this ratio. First, truncated NK4 variants
(NK1 and NK2) may diffuse faster through collagen, although
this benefit may be at the cost of reduced cMet repression
activity.37 Second, fusing matrix-binding domains to HGF could
retard its diffusion, as was achieved recently with a number of
growth factors that were engineered to have superaffinity to
extracellular matrix.38 Fusing multimerization domains could
also reduce HGF diffusion, in principle, and increase potential
Turing space.
(3) Steeper regulatory function responses, potentially

achieved by greater cooperativity, lead to larger potential
Turing space. Interestingly, the MMP-1 promoter that we use1

can be fitted with an apparent Hill coefficient of only nH = 1.2.
This is toward the lower end of the range that supports Turing
patterns, and the system may benefit from a search for steeper
induction responses, with respect to HGF morphogen
concentration. Practically, this would mean searching for
promoters that respond more steeply to HGF in a dose−
response curve and then defining the minimal promoter and
enhancer region that captured this function in a synthetic
promoter construct. Not only do higher Hill coefficients
increase the likelihood of Turing space but also they reduce the
requirement for differential diffusion: with nH = 6, we were able
to use D = 0.75, which implies that the activator need diffuse
only 3/4 as fast as the inhibitor.
(4) Larger patterns (fewer complete waves per spatial

interval) develop faster over time, in agreement with ref 27.
This can be tuned by varying the relative ratios of inhibitor or
activator production and degradation, as follows: (4.1)
Increasing the production or activity of activator or decreasing
the activity or production of inhibitor can also increase the
pattern size and rate of emergence of the patterns. In practice,
this might be achieved under the single promoter by adding
tandem copies of activator, HGF, linked by internal ribosome
entry sites (IRES) or the viral self-cleaving 2A peptide signal or
by using NK4 variants with lower activity (e.g., NK1 and NK2).
(4.2) Increasing inhibitor degradation or decreasing activator
degradation will increase the pattern size and, consequently, the
patterns will develop more rapidly. Assuming that NK4 has a
similar half-life to that of HGF, an artificially higher degradation
function could be achieved by adding site-specific tobacco etch
virus (TEV) protease cleavage sites in the linkers between
Kringle domains in NK4. TEV protease could then be added to
the collagen gel matrix, where the cells are grown, in order to
tune this differential degradation function. It should be noted,
however, that to facilitate engineering differential degradation is
not an absolute requirement.

Figure 9. Turing patterns with parameters to increase potential Turing
space in the context of low cooperativity. Simulation results obtained
for D = 0.01, nH = 1.333, μ = 0.5, and rh = 5 and with three different
values of ra: 2.9 (A), 3.5 (B), and 4.2 (C).
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(5) Using two different HGF-responsive promoters could
tune the space and time scale of the system. For example, with a
greater production rate of the activator relative to that of the
inhibitor, one would achieve larger, more rapidly forming
patterns. In practice, the TIMP1 promoter39 has a reported
200-fold induction with HGF and might be used to drive
further HGF production after suitable characterization. By
contrast, the MMP-1 promoter fragment we currently use is
induced only up to 4-fold with HGF. Assuming similar
uninduced production rates, reversing the order of promoter
usage would produce more NK4 and lead to smaller, slower-
evolving patterns.
Recently, McKane et al. proved that the effect of intrinsic

noise translates, in the linear noise approximation scenario at
least, into an enlargement of the parameter region yielding
Turing mechanisms when compared to a deterministic
analysis.40 This result gives noise a further role in Turing
patterning, beyond simply providing the essential initial
perturbations that break the homogeneity of the systems.
Here, we reported other biological features that could also be
essential to support Turing instabilities in a specified biological
framework, based on an HGF/NK4 sender−receiver system in
Madin−Darby canine kidney (MDCK) cells.1 We believe that
the use of a nonlinear regulatory function that is more
biologically interpretable, in combination with stability analyses,
offers new insights over the nature of this pattern formation,
especially in the context of synthetic biology.

■ METHODS
For the simulation of the dimensionless reaction−diffusion
equations (4 and 5), we employed a Mathematica v9.0 script
built in-house (see Supporting Information for an example). In
all of these cases, the initial condition for the activator consists
of the unstable solution plus a small Gaussian perturbation
(imperceptible in the plots) in the middle of the spatial domain.
The initial condition for the inhibitor was the unperturbed
unstable solution ho. To explore the effect of the boundary
condition, we used both a periodic boundary condition, i.e.,
a(0) = a(L) and h(0) = h(L), as well as the zero-flux boundary
condition, i.e., ax(0) = ax(L) = 0 and hx(0) = h(L). No major
differences were observed by using these boundary conditions.
For the numerical integration procedure, we use an adaptative
temporal step size so that the estimated error in the solution is
just within the specified accuracy, 10−6.
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(19) Feldman, D., Nagao, R., Bańsaǵi, T., Epstein, I. R., and Dolnik,
M. (2012) Turing patterns in the chlorine dioxide−iodine−malonic
acid reaction with square spatial periodic forcing. Phys. Chem. Chem.
Phys. 14, 6577−6583.
(20) Horvat́h, J., Szalai, I., and De Kepper, P. (2009) An experimental
design method leading to chemical Turing patterns. Science 324, 772−
775.
(21) Tompkins, N., Li, N., Girabawe, C., Heymann, M., Ermentrout,
G. B., Epstein, I. R., and Fraden, S. (2014) Testing Turing’s theory of
morphogenesis in chemical cells. Proc. Natl. Acad. Sci. U.S.A.,
DOI: 10.1073/pnas.1322005111.
(22) Maini, P. K., Woolley, T. E., Baker, R. E., Gaffney, E. A., and
Lee, S. S. (2012) Turing’s model for biological pattern formation and
the robustness problem. Interface Focus 2, 487−496.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500233u | ACS Synth. Biol. 2015, 4, 177−186185

http://pubs.acs.org
mailto:ldiambra@gmail.com
mailto:m.isalan@imperial.ac.uk


(23) Wolpert, L., Beddington, R., Jessel, T., Lawrence, P.,
Meyerowitz, E., and Smith, J. (2001) Principles of Development, Oxford
University Press, Oxford.
(24) Monk, N. (2000) Elegant hypothesis and inelegant fact in
developmental biology. Endeavour 24, 170−173.
(25) Zhang, S., Yan, L., Altman, M., Las̈sle, M., Nugent, H., Frankel,
F., Lauffenburger, D. A., Whitesides, G. M., and Rich, A. (1999)
Biological surface engineering: a simple system for cell pattern
formation. Biomaterials 20, 1213−1220.
(26) Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., and Weiss,
R. (2005) A synthetic multicellular system for programmed pattern
formation. Nature 434, 1130−1134.
(27) Miura, T., and Maini, P. (2004) Speed of pattern appearance in
reaction-diffusion models: implications in the pattern formation of
limb bud mesenchyme cells. Bull. Math. Biol. 66, 627−649.
(28) Banerjee, S., and Chakrabarti, C. G. (1999) Non-linear
bifurcation analysis of reaction-diffusion activator-inhibator system. J.
Biol. Phys. 25, 23−33.
(29) Economou, A. D., Ohazama, A., Porntaveetus, T., Sharpe, P. T.,
Kondo, S., Basson, M. A., Gritli-Linde, A., Cobourne, M. T., and
Green, J. B. A. (2012) Periodic stripe formationby a Turing
mechanism operating at growth zones in the mammalian palate. Nat.
Genet. 44, 348−351.
(30) Sick, S., Reinker, S., Timmer, J., and Schlake, T. (2006) WNT
and DKK determine hair follicle spacing through a reaction-diffusion
mechanism. Science 314, 1447−1450.
(31) Lengyel, I., Kadar, S., and Epstein, I. R. (1993) Transient turing
structures in a gradient-free closed system. Science 259, 493−495.
(32) Kadar, S., Lengyel, I., and Epstein, I. R. (1995) Modeling of
transient turing-type patterns in the closed chlorine dioxide−iodine−
malonic acid−starch reaction system. J. Phys. Chem. 99, 4054−4058.
(33) Gutierrez, P. S., Monteoliva, D., and Diambra, L. (2012)
Cooperative binding of transcription factors promotes bimodal gene
expression response. PLoS One 7, e44812.
(34) Buchler, N. E., and Louis, M. (2008) Molecular titration and
ultrasensitivity in regulatory networks. J. Mol. Biol. 384, 1106−1119.
(35) Müller, P., Rogers, K. W., Jordan, B. M., Lee, J. S., Robson, D.,
Ramanathan, S., and Schier, A. F. (2012) Differential diffusivity of
nodal and lefty underlies a reaction-diffusion patterning system. Science
336, 721−724.
(36) Isalan, M. (2009) Gene networks and liar paradoxes. BioEssays
31, 1110−1115.
(37) Tolbert, W. D., Daugherty-Holtrop, J., Gherardi, E., Vande
Woude, G., and Xu, H. E. (2010) Structural basis for agonism and
antagonism of hepatocyte growth factor. Proc. Natl. Acad. Sci. U.S.A.
107, 13264−13269.
(38) Martino, M. M., Briquez, P. S., Güc,̧ E., Tortelli, F., Kilarski, W.
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